Mild and Efficient Synthesis of (*Z***)-**r**-Chloroalkylidene-***â***-lactones via the PdCl2-Catalyzed Cyclocarbonylation of 2-Alkynols**

Shengming Ma,* Bin Wu, and Shimin Zhao

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China

masm@mail.sioc.ac.cn

Received September 9, 2003

A mild and efficient methodology involving PdCl₂-catalyzed cyclocarbonylation of 2-alkynols with CuCl₂ for the synthesis of (*Z*)- α -chloroalkylidene*â***-lactones was developed. Using the readily available optically active propargylic alcohols allows convenient synthesis of the corresponding (***Z***)-**r**-chloroalkylidene-***â***-lactones with high ee values.** *cis***-Chloropalladation was observed as the major pathway, which is unique as compared to the reported data.**

Propargylic alcohols are readily available compounds of synthetic importance.^{1,2} Of particular interest is the transition metal-mediated or -catalyzed carboxylation reaction. Rosenthal et al. reported that the transition metal-catalyzed or -mediated reaction of 2-propynol afforded α -hydroxy (or methoxyl) methyl acrylates together with several other acrylate derivatives.3,4 For the cyclizative carboxylation reaction of propargylic alcohols, three types of reaction patterns affording butenolides, α -alkylidene- β -lactones, or α , β -unsaturated enals, respectively, have been demonstrated (Scheme 1). $5-11$

(5) Van den Hoven, B. G.; Ali, B. E.; Alper, H. *J. Org. Chem.* **2000**, *65*, 4131.

10.1021/ol0357245 CCC: \$25.00 © 2003 American Chemical Society **Published on Web 10/17/2003**

ORGANIC LETTERS

2003 Vol. 5, No. 23 ⁴⁴²⁹-**⁴⁴³²**

Usually, β -lactones were formed from terminal propargylic alcohols, with the selectivity and the yield depending largely on the structures of the alcohols. $9-11$

^{(1) (}a) Schubert, T.; Hummel, W.; Müller, M. *Angew. Chem., Int. Ed.* **2002**, *41*, 634. (b) Tan, L.; Chen, C.; Tillyer, R. D.; Grabowski, E. J. J.; Reider, P. J. *Angew. Chem., Int. Ed.* **1999**, *38*, 711. (c) Cassel, J. A.; Leue, S.; Gachkova, N. I.; Kann, N. C. *J. Org. Chem.* **2002**, *67*, 9460.

^{(2) (}a) Lo´pez, F.; Castedo, L.; Mascaren˜as, J. L. *J. Am. Chem. Soc.* **2002**, *124*, 4218. (b) Burova, S. A.; McDonald, F. E. *J. Am. Chem. Soc.* **2002**, *124*, 8188. (c) Blandino, M.; McNelis, E. *Org. Lett*. **2002**, *4*, 3387. (d) McDonald, F. E.; Wu, M. *Org. Lett*. **2002**, *4*, 3979. (e) Grotjahn, D. B.; Van, S.; Combs, D.; Lev, D. A.; Schneider, C.; Rideout, M.; Meyer, C.; Hernandez, G.; Mejorado, L. *J. Org. Chem.* **2002**, *67*, 9200.

⁽³⁾ Rosenthal, R. W.; Schwartzman, L. H.; Greco, N. P.; Proper, R. *J. Org. Chem.* **1963**, *28*, 2835.

⁽⁴⁾ Nogi, T.; Tsuji, J. *Tetrahedron* **1969**, *25*, 4099.

⁽⁶⁾ Fukuta, Y.; Matsuda, I.; Itoh, K. *Tetrahedron Lett.* **2001**, *42*, 1301. (7) Larock, R. C.; Riefling, B.; Fellows, C. A. *J. Org. Chem.* **1978**, *43*, 131.

 α -Alkylidene- β -lactones are important skeletons in some biologically active natural products¹² and considered as useful building blocks in organic synthesis.13 Besides the methods described above, α -alkylidene- β -lactones have also been prepared via $[2 + 2]$ cycloaddition of ketenes and carbonyl compounds,¹⁴ lactonization of β -hydroxy carboxylic acids or derivatives,¹⁵ and deoxygenation of β -peroxylactones.¹⁶ However, these known pioneering methods may, in some cases, suffer from lengthy procedures, harsh conditions, or low yields. Thus, new and efficient methodologies for α -alkylidene- β -lactones are still desirable. In this paper, we report a general and high-yielding Pd-catalyzed carbonylation of propargylic alcohols with various structural patterns forming (Z) - α -chloroalkylidene- β -lactones selectively.

Our initial observation of achieving (Z) - α -chloroalkylidene-*â*-lactone **2a** involved the reaction of **1a**, 3 equiv of CuCl₂, and CO (1 atm) with PdCl₂ as the catalyst at 20 $^{\circ}$ C in PhH, but the yield was only 29% (entry 1, Table 1). With

Table 1. PdCl₂-Catalyzed Cyclocarbonylation of Undec-4-yn-3-ol **1a** with CuCl₂

$n - C_6 H_{13}$	1a	OH C_2H_5	CuCl ₂ $PdCl2$ (10 mol%) CO. solvent	СI	C_6H_{13} ⁿ (Z)-2a	C_2H_5		
	$_{\rm CO}$	CuCl ₂		temp	time	yield ^a		
entry	(atm)	(equiv)	solvent	$(^{\circ}C)$	(h)	(%)		
1	1	3	PhH	20	18	29		
$\boldsymbol{2}$	15	3	THF	25	17	35		
3	20	5	THF	30	4	86		
4	20	5	THF	70	$\overline{\mathbf{4}}$	31		
^a Isolated yield.								

the pressure of CO being 15 atm, the yield was not dramatically improved (entries 2, Table 1). After some trial

(9) Consorti, C. S.; Ebeling, G.; Dupont, J. *Tetrahedron Lett.* **2002**, *43*, 753.

(10) Gabriele, B.; Salerno, G.; De Pascali, F.; Costa, M.; Chiusoli, G. P. *J. Chem. Soc., Perkin Trans. 1* **1997**, 147.

(11) Matsuda, I.; Ogiso, A.; Sato, S. *J. Am. Chem. Soc.* **1990**, *112*, 6120. (12) (a) Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H. *Phytochemistry* **1981**, *20*, 1069. (b) Bohlmann, F.; Zdero, C.; King, R. M.; Robinson, H. *Phytochemistry* **1983**, *22*, 2860. (c) Bohlmann, F.; Paul, A. H. K. *Tetrahedron Lett*. **1984**, *25*, 1697.

(13) (a) Adam, W.; Albert, R.; Hasemann, L.; Nava Salgado, V. O.; Nestler, B.; Peters, E.-M.; Peters, K.; Prechtl, F.; von Schnering, H. G. *J. Org. Chem.* **1991**, *56*, 5782. (b) Danheiser, R. L.; Choi, Y. M.; Menichincheri, M.; Stoner, E. J. *J. Org. Chem.* **1993**, *58*, 322. (c) Martinez, I.; Andrews, A. E.; Emch, J. D.; Ndakala, A. J.; Wang, J.; Howell, A. R. *Org. Lett*. **2003**, *5*, 399. (d) For a review, see: Pommier, A.; Pons, J.-M. *Synthesis* **1993**, 441.

(14) (a) Adam, W.; Nava Salgado, V. O.; Peters, E.-M.; Peters, K.; von Schnering, H. G. *Chem. Ber.* **1993**, *126*, 1481. (b) Payne, G. B. *J. Org. Chem.* **1966**, *31*, 718. (c) Baxter, G. J.; Brown, R. F. C.; Eastwood, F. W.; Gatehouse, B. M.; Nesbit, M. C. *Aust. J. Chem.* **1978**, *31*, 1757. (d) Ben Cheikh, A.; Pommelet, J.-C.; Chuche, J. *J. Chem. Soc., Chem. Commun*. **1990**, 615. (e) Masters, A. P.; Sorensen, T. S. *Tetrahedron Lett.* **1989**, *30*, 5869.

(15) (a) Zhang, C.; Lu, X. *Synthesis* **1996**, 586. (b) Bartels, A.; Jones, P. G.; Liebscher, J. *Synthesis* **1998**, 1645.

and error, we found that the solvent, CO pressure, and temperature are crucial factors, and the best reaction conditions are 10 mol % PdCl₂, 5 equiv of CuCl₂, and CO (20) atm) in THF at 30 °C for 4 h. Under these reaction conditions, (*Z*)-**2a** was isolated in 86% yield (entry 3, Table 1).

To explore the scope of this reaction, the effect of substituents $R¹$ and $R²$ was investigated. As can be seen from Table 2, $R¹$ can be an alkyl group or an aryl group, including

Table 2. PdCl₂-Catalyzed Cyclocarbonylation of Secondary Propargylic Alcohols with 5 Equiv of CuCl₂

R^1 -	OH R^2 1	$PdCl2$ (10 mol%) CuCl ₂ (5 equiv) THF, CO (20 atm), 30 °C, 4 h		R^1 R^2 Z)-2			
entry	\mathbb{R}^1	\mathbb{R}^2	product	isolated yield (%)			
1	$n - C_6H_{13}$	C_2H_5	(Z) -2a	86			
\overline{c}	$n - C_5H_{11}$	$n-C_4H_9$	(Z) -2b	76			
3	$n-C3H7$	$n-C4H9$	(Z) -2c	74			
4	$n-C_4H_9$	Me	(Z) -2d	64			
5	$n - C4H9$	$n\text{-}C_3H_7$	(Z) -2e	72			
6 ^a	$n-C_4H_9$	$n-C_5H_{11}$	(Z) -2f	67			
7	$n-C4H9$	i -Pr	(Z) -2g	71			
8	$n-C4H9$	<i>i</i> -Bu	(Z) -2h	90			
9	$n\text{-}C_4H_9$	cyclohexyl	(Z) -2i	82			
10	t-Bu	$n - C4H9$	(Z) -2j	89			
11 ^a	Ph	i -Pr	(Z) -2k	91			
12	Ph	<i>i</i> -Bu	(Z) -21	81			
13 ^a	Ph	cyclohexyl	(Z) -2m	78			
14	$PhCH_2CH_2$	i -Pr	(Z) -2n	66			
15 ^a	$PhCH_2CH_2$	<i>i-</i> Bu	(Z) -20	52			
16 ^a	$PhCH_2CH_2$	cyclohexyl	(Z) -2p	63			
a Reaction time was 6 h.							

 t Bu, while the R^2 group should be an alkyl group. The fourmembered structures of (Z)-**2** were established by a singlecrystal X-ray diffractional study of (Z)-**2k**¹⁷ and (Z)-**2n**¹⁸ (Figure 1). When R^2 was an aryl group, the corresponding carbonylation of 1-(4′-methoxyphenyl)hept-2-yn-1-ol gave only a complex mixture. The cyclocarbonylation of tertary alcohol 2-methyloct-3-yn-2-ol $1q$ also gave (Z) - α -chloroalkylidene β -lactone (*Z*)-2q in 50% yield (eq 1).

$$
Bu'' = \n\begin{array}{c|c|c|c|c|c|c} & PdCl_2(10 \text{ mol\%}) & & Bu'' \\ \n\hline & CuCl_2(5 \text{ equiv}) & & Cl & & (1) \\ \n\hline & THF, CO(20 \text{ atm}), 30^{\circ}\text{C}, 4 \text{ h} & & O & & O \\ \n\end{array}
$$

A detailed study showed that some amounts of (E) - α chloroalkylidene- β -lactone (*E*)-2a and butenolide 3a were also formed, which were difficult to purify (Figure 2).

⁽⁸⁾ Buchwald, S. L.; Fang, Q.; King, S. M. *Tetrahedron Lett.* **1988**, *29*, 3445.

^{(16) (}a) Adam, W.; Albert, R.; Dachs Grau, N.; Hasemann, L.; Nestler, B.; Peters, E.-M.; Peters, K.; Prechtl, F.; von Schnering, H. G. *J. Org. Chem.* **1991**, *56*, 5778. (b) Adam, W.; Hasemann, L.; Prechtl, F. *Angew. Chem., Int. Ed. Engl.* **1988**, *27*, 1536.

In addition, the results for the cyclocarbonylation of the optically active secondary propargylic alcohols¹⁹ are summarized in Table 3. From Table 3, it can be seen that racemization of the chiral center in **1** was not observed. The yields range from 63 to 89%.

 (Z) -2n

C₁₀

A plausible mechanism is shown in Scheme 2. The coordination of the triple bond of 1 with $PdCl₂$ gave complex **4**, which was followed by *cis*-chloropalladation to give **5**. The subsequent coordination and insertion of CO gave

Table 3. Synthesis of Optically Active (*Z*)-R-Chloroalkylidene-*â*-lactones

^a Absolute stereochemistry was established by comparison with the literature data.19b Enantiomeric excess was determined by HPLC on a chiralcel OD column. *^b* Isolated yield. *^c* Enantiomeric excess was determined by HPLC on a chiralcel OD-H or AS column. *^d* Reaction time was 6 h.

complex **6**, which was followed by reductive elimination to afford the major product (Z) -2. PdCl₂ was regenerated by

the oxidation reaction of the in situ-generated Pd(0) with CuCl2. It is interesting to note that here, even with a nonterminal C-C triple bond, *cis*-halometalation is the major pathway.20

⁽¹⁷⁾ Crystal data for compound **2k**: C₁₃H₁₃O₂Cl, MW = 236.68, noclinic space group $P2(1)/n$. Mo K α final R indices $[I \ge 2\sigma(I)]$. R1 monoclinic, space group *P*2(1)/*n*, Mo K α , final *R* indices $[I \ge 2\sigma(I)]$, *R*1
= 0.0502, w*R*2 = 0.0963, $a = 9.8786$ (13) \AA $b = 18.626$ (2) \AA $c =$ $= 0.0502$, wR2 $= 0.0963$, $a = 9.8786$ (13) Å, $b = 18.626$ (2) Å, $c =$ 13.5620 (17) Å, $\alpha = 90^\circ$, $\beta = 101.777$ (3)°, $\gamma = 90^\circ$, $V = 2442.9$ (5) Å³, $T = 293$ (2) K, $Z = 8$, reflections collected/unique: 14691/5663 ($R_{\text{int}} =$ 0.0761), no observation $[I > 2\sigma(I)]$ 2497, parameters 393.

⁽¹⁸⁾ Crystal data for compound $2n$: C₁₅H₁₇O₂Cl, MW = 264.74, monoclinic, space group *C*2/*c*, Mo K α , final *R* indices $[I > 2\sigma(I)]$, $R1 = 0.0613$, $wR2 = 0.1314$, $a = 30.575$ (4) Å, $b = 6.3076$ (9) Å, $c = 16.685$ 0.0613, w*R*2 = 0.1314, *a* = 30.575 (4) Å, *b* = 6.3076 (9) Å, *c* = 16.685 (2) Å, α = 90°, *β* = 115.390 (3)°, *γ* = 90°, *V* = 2907.0 (7) Å³, *T* = 293 (2) K, $Z = 8$, reflections collected/unique: 7296/2712 ($R_{in} =$ (2) K, $Z = 8$, reflections collected/unique: 7296/2712 ($R_{int} = 0.1504$), no
observation $[I \ge 2\sigma(I)]$ 1514 parameters 212. observation $[I \geq 2\sigma(I)]$ 1514, parameters 212.

^{(19) (}a) For a recent review on the synthesis of optically active propargylic alcohols, see: Ma, S.; He, Q. *Chin. J. Org. Chem.* **2002**, *6*, 375. (b) Frantz, D. E.; Fässler, R.; Carreira, E. M. *J. Am. Chem. Soc.* 2000, *122*, 1806.

In conclusion, (1) we have developed a mild, goodyielding, and efficient methodology for the synthesis of (*Z*)- α -chloroalkylidene- β -lactones; (2) using the readily available chiral propargylic alcohols allows synthesis of the corresponding (Z) - α -chloroalkylidene- β -lactones with high ee values; (3) and *cis*-chloropalladation was observed as the major reaction pathway. Further studies in this area are being pursued in our laboratory.

Acknowledgment. Financial support from the National Natural Science Foundation of China and the Major

State Basic Research Development Program (Grant No. G2000077500) is greatly appreciated. Shengming Ma is the recipient of a 1999 Qiu Shi Award for Young Scientific Workers issued by Hong Kong Qiu Shi Foundation of Science and Technology (1999-2003).

Supporting Information Available: Typical experimental procedure and analytical data for all products, including CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0357245

^{(20) (}a) Ma, S.; Lu, X. *J. Org. Chem*. **1993**, *58*, 1245. (b) Li, J.; Jiang, H.; Feng, A.; Jia, L. *J. Org. Chem*. **1999**, *64*, 5984. (c) Huang, X.; Sun, A. *J. Org. Chem*. **2000**, *65*, 6561.